Теорема об изменении момента количества движения материальной точки. Момент количества движения точки. Кинетический момент вращающейся системы

Монеты и банкноты
  • 1. Алгебраический момент количества движения относительно центра. Алгебраический О -- скалярная величина, взятая со знаком (+) или (-) и равная произведению модуля количества движения m на расстояние h (перпендикуляр) от этого центра до линии, вдоль которой направлен вектор m :
  • 2. Векторный момент количества движения относительно центра.

Векторный момент количества движения материальной точки относительно некоторого центра О -- вектор, приложенный в этом центре и направленный перпендикулярно плоскости векторов m и в ту сторону, откуда движение точки видно против хода часовой стрелки. Это определение удовлетворяет векторному равенству


Моментом количества движения материальной точки относительно некоторой оси z называется скалярная величина, взятая со знаком (+) или (-) и равная произведению модуля проекции вектора количества движения на плоскость, перпендикулярную этой оси, на перпендикуляр h, опущенный из точки пересечения оси с плоскостью на линию, вдоль которой направлена указанная проекция:

Кинетический момент механической системы относительно центра и оси

1. Кинетический момент относительно центра.

Кинетическим моментом или главным моментом количеств движения механической системы относительно некоторого центра называется геометрическая сумма моментов количеств движения всех материальных точек системы относительно того же центра.

2. Кинетический момент относительно оси.

Кинетическим моментом или главным моментом количеств движения механической системы относительно некоторой оси называется алгебраическая сумма моментов количеств движения всех материальных точек системы относительно той же оси.

3. Кинетический момент твердого тела, вращающегося вокруг неподвижной оси z с угловой скоростью.

Теорема об изменении момента количества движения материальной точки относительно центра и оси

1. Теорема моментов относительно центра.

Производная по времени от момента количества движения материальной точки относительно некоторого неподвижного центра равна моменту силы, действующей на точку, относительно того же центра

2. Теорема моментов относительно оси.

Производная по времени от момента количества движения материальной точки относительно некоторой оси равна моменту силы, действующей на точку, относительно той же оси

Теорема об изменении кинетического момента механической системы относительно центра и оси

Теорема моментов относительно центра.

Производная по времени от кинетического момента механической системы относительно некоторого неподвижного центра равна геометрической сумме моментов всех внешних сил, действующих на систему, относительно того же центра;

Следствие. Если главный момент внешних сил относительно некоторого центра равен нулю, то кинетический момент системы относительно этого центра не изменяется (закон сохранения кинетического момента).

2. Теорема моментов относительно оси.

Производная по времени от кинетического момента механической системы относительно некоторой неподвижной оси равна сумме моментов всех внешних сил, действующих на систему, относительно этой оси

Следствие. Если главный момент внешних сил относительно некоторой оси равен нулю, то кинетический момент системы относительно этой оси не изменяется.

Например, = 0, тогда L z = const.

Работа и мощность сил

Работа силы -- скалярная мера действия силы.

1. Элементарная работа силы.

Элементарная работа силы -- это бесконечно малая скалярная величина, равная скалярному произведению вектора силы на вектор бесконечного малого перемещения точки приложения силы: ; - приращение радиуса-вектора точки приложения силы, годографом которого является траектория этой точки. Элементарное перемещение точки по траектории совпадает с в силу их малости. Поэтому

если то dA > 0;если, то dA = 0;если , то dA < 0.

2. Аналитическое выражение элементарной работы.

Представим векторы и d через их проекции на оси декартовых координат:

, . Получим (4.40)

3. Работа силы на конечном перемещении равна интегральной сумме элементарных работ на этом перемещении

Если сила постоянная, а точка ее приложения перемещается прямолинейно,

4. Работа силы тяжести. Используем формулу:Fx = Fy = 0; Fz = -G = -mg;

где h- перемещение точки приложения силы по вертикали вниз (высота).

При перемещении точки приложения силы тяжести вверх A 12 = -mgh (точка М 1 -- внизу, M 2 -- вверху).

Итак,. Работа силы тяжести не зависит от формы траектории. При движении по замкнутой траектории (M 2 совпадает с М 1 ) работа равна нулю.

5. Работа силы упругости пружины.

Пружина растягивается только вдоль оси х:

F y = F z = О, F x = = -сх;

где - величина деформации пружины.

При перемещении точки приложения силы из нижнего положения в верхнее направление силы и направление перемещения совпадают, тогда

Поэтому работа силы упругости

Работа сил на конечном перемещении; Если = const, то

где - конечный угол поворота; , где п -- число оборотов тела вокруг оси.

Кинетическая энергия материальной точки и механической системы. Теорема Кенига

Кинетическая энергия - скалярная мера механического движения.

Кинетическая энергия материальной точки - скалярная положительная величина, равная половине произведения массы точки на квадрат ее скорости,

Кинетическая энергия механической системы -- арифметическая сумма кинетических энергий всех материал точек этой системы:

Кинетическая энергия системы, состоящей из п связанных между собой тел, равна арифметической сумме кинетических энергий всех тел этой системы:

Теорема Кенига

Кинетическая энергия механической системы в общем случае ее движения равна сумме кинетической энергии движения системы вместе с центром масс и кинетической энергии системы при ее движении относительно центра масс:

где Vkc -- скорость k- й точки системы относительно центра масс.

Кинетическая энергия твердого тела при различном движении

Поступательное движение.

Вращение тела вокруг неподвижной оси . ,где -- момент инерции тела относительно оси вращения.

3. Плоскопараллельное движение. , где - момент инерции плоской фигуры относительно оси, проходящей через центр масс.

При плоском движении тела кинетическая энергия складывается из кинетической энергии поступательного движения тела со скоростью центра масс и кинетической энергии вращательного движения вокруг оси, проходящей через центр масс, ;

Теорема об изменении кинетической энергии материальной точки

Теорема в дифференциальной форме.

Дифференциал от кинетической энергии материальной точки равен элементарной работе силы, действующей на точку,

Теорема в интегральной (конечной) форме.

Изменение кинетической энергии материальной точки на некотором перемещении равно работе силы, действующей на точку, на том же перемещении.

Теорема об изменении кинетической энергии механической системы

Теорема в дифференциальной форме.

Дифференциал от кинетической энергии механической системы равен сумме элементарных работ внешних и внутренних сил, действующих на систему.

Теорема в интегральной {конечной) форме.

Изменение кинетической энергии механической системы на некотором перемещении равно сумме работ внешних и внутренних сил, приложенных к системе, на том же перемещении. ; Для системы твердых тел = 0 (по свойству внутренних сил). Тогда

Закон сохранения механической энергии материальной точки и механической системы

Если на материальную точку или механическую систему действуют только консервативные силы, то в любом положении точки или системы сумма кинетической и потенциальной энергий остается величиной постоянной.

Для материальной точки

Для механической системы Т+ П= const

где Т+ П -- полная механическая энергия системы.

Динамика твердого тела

Дифференциальные уравнения движения твердого тела

Эти уравнения можно получить из общих теорем динамики механической системы.

1. Уравнения поступательного движения тела -- из теоремы о движении центра масс механической системы В проекциях на оси декартовых координат

2. Уравнение вращения твердого тела вокруг неподвижной оси - из теоремы об изменении кинетического момента механической системы относительно оси, например, относительно оси

Так как кинетический момент L z твердого тела относительно оси, то если

Так как или, то уравнение можно записать в виде или,форма записи уравнения зависит от того, что следует определить в конкретной задаче.

Дифференциальные уравнения плоскопараллельного движения твердого тела представляют собой совокупность уравнений поступательного движения плоской фигуры вместе с центром масс и вращательного движения относительно оси, проходящей через центр масс:

Физический маятник

Физическим маятником называется твердое тело, вращающееся вокруг горизонтальной оси, не проходящей через центр масс тела, и движущееся под действием силы тяжести.

Дифференциальное уравнение вращения

В случае малых колебаний.

Тогда, где

Решение этого однородного уравнения.

Пусть при t=0 Тогда

-- уравнение гармонических колебаний.

Период колебаний маятника

Приведенная длина физического маятника -- это длина такого математического маятника, период колебаний которого равен периоду колебаний физического маятника.

Количество движения системы, как векторная величина, определяется формулами (4.12) и (4.13).

Теорема. Производная от количества движения системы по времени равна геометрической сумме всех действующих на нее внешних сил.

В проекциях декартовые оси получим скалярные уравнения.

Можно записать векторное

(4.28)

и скалярные уравнения

Которые выражают теорему об изменении количества движения системы в интегральной форме: изменение количества движения системы за некоторый промежуток времени равно сумме импульсов за тот же промежуток времени. При решении задач чаще используются уравнения (4.27)

Закон сохранения количества движения

Теорема об изменении кинетического момента

Теорема об изменении момента количества движения точки относительно центра: производная по времени от момента количества движения точки относительно неподвижного центра равна векторному моменту, действующей на точку силы относительно того же центра.

Или (4.30)

Сравнивая (4.23) и (4.30), видим, что моменты векторов и связаны такой же зависимостью, какой связаны сами векторы и (рис. 4.1). Если спроектировать равенство на ось , проходящую через центр О, то получим

(4.31)

Это равенство выражает теорему момента количества движения точки относительно оси.

Рис. 4.1.
Теорема об изменении главного момента количества движения или кинетического момента механической системы относительно центра: производная по времени от кинетического момента системы относительно некоторого неподвижного центра равно сумме моментов всех внешних сил относительно того же центра.

(4.32)

Если спроектировать выражение (4.32) на ось , проходящей через центр О, то получим равенство, характеризующее теорему об изменении кинетического момента относительно оси.

(4.33)

Подставляя (4.10) в равенство (4.33) можно записать дифференциальное уравнение вращающегося твердого тела (колес, осей, валов, роторов и т.д.) в трех формах.

(4.34)

(4.35)

(4.36)

Таким образом, теорему об изменении кинетического момента целесообразно использовать для исследования весьма распространенного в технике движения твердого тела, его вращения вокруг неподвижной оси.

Закон сохранения кинетического момента системы

1. Пусть в выражении (4.32) .

Тогда из уравнения (4.32) следует, что , т.е. если сумма моментов всех приложенных к системе вешних сил относительно данного центра равно нулю, то кинетический момент системы относительно этого центра будет численно и по направлению будет постоянен.

2. Если , то . Таким образом, если сумма моментов действующих на систему внешних сил относительно некоторой оси равна нулю, то кинетический момент системы относительно этой оси будет величиной постоянной.

Эти результаты выражают собой закон сохранения кинетического момента.

В случае вращающегося твердого тела из равенства (4.34) следует, что, если , то . Отсюда приходим к следующим выводам:

Если система неизменяема (абсолютно твердое тело), то , следовательно, и и твердое тело вращается вокруг неподвижной оси с постоянной угловой скоростью.

Если система изменяема, то . При увеличении (тогда отдельные элементы системы удаляются от оси вращения) угловая скорость уменьшается, т.к. , а при уменьшении увеличивается, таким образом, в случае изменяемой системы с помощью внутренних сил можно изменить угловую скорость.

Вторая задача Д2 контрольной работы посвящена теореме об изменении кинетического момента системы относительно оси.

Задача Д2

Однородная горизонтальная платформа (круглая радиуса R или прямоугольная со сторонами R и 2R, где R = 1,2м) массой кг вращается с угловой скоростью вокруг вертикальной оси z, отстоящей от центра масс C платформы на расстоянии OC = b (рис. Д2,0 – Д2,9, табл. Д2); размеры для всех прямоугольных платформ показаны на рис. Д2,0а (вид сверху).

В момент времени по желобу платформы начинает двигаться (под действием внутренних сил) груз D массой кг по закону , где s выражено в метрах, t - в секундах. Одновременно на платформы начинает действовать пара сил с моментом M (задан в ньютонометрах; при M < 0 его направление противоположно показанному на рисунках).

Определить, пренебрегая массой вала, зависимость т.е. угловую скорость платформы, как функцию времени.

На всех рисунках груз D показан в положении, при котором s > 0 (когда s < 0, груз находится по другую сторону от точки А). Изображая чертеж решаемой задачи, провести ось z на заданном расстоянии OC = b от центра C.

Указания. Задача Д2 – на применение теоремы об изменении кинетического момента системы. При применении теоремы к системе, состоящей из платформы и груза, кинетический момент системы относительно оси z определяется как сумма моментов платформы и груза. При этом следует учесть, что абсолютная скорость груза складывается из относительной и переносной скоростей, т.е. . Поэтому и количество движения этого груза . Тогда можно воспользоваться теоремой Вариньона (статика), согласно которой ; эти моменты вычисляются так же, как моменты сил. Подробнее ход решения разъяснен в примере Д2.

При решении задачи полезно изобразить на вспомогательном чертеже вид на платформу сверху (с конца z), как это сделано на рис. Д2,0,а – Д2,9, а.

Момент инерции пластины с массой m относительно оси Cz, перпендикулярной пластине и проходящей через ее центр масс, равен: для прямоугольной пластины со сторонами и

;

Для круглой пластины радиуса R


Номер условия b s = F(t) M
R R/2 R R/2 R R/2 R R/2 R R/2 -0.4 0.6 0.8 10 t 0.4 -0.5t -0.6t 0.8t 0.4 0.5 4t -6 -8t -9 6 -10 12

Рис. Д2.0
Рис. Д2.0а

Рис. Д2.1
Рис. Д2.1а

Рис. Д2.2
Рис. Д2.2а

Рис. Д2.3
Рис. Д2.3а

Рис. Д2.4
Рис. Д2.4а

Рис. Д2.5а
Рис. Д2.5

Рис. Д2.6
Рис. Д2.6а

Рис. Д2.7
Рис. Д2.7а

Рис. Д2.8
Рис. Д2.8а

Рис. Д2.9
Рис. Д2.9а

Рис. Д2

Пример Д2 . Однородная горизонтальная платформа (прямоуголь­ная со сторонами 2l и l), имеющая массу жестко скреплена с вертикальным валом и вращается вместе с ним вокруг оси z с угло­вой скоростью (рис. Д2а). В момент времени на вал начинает действовать вращающий момент М, направленный противо­положно ; одновременно груз D массой , находящийся в желобе АВ в точке С, начинает двигаться по желобу (под действием внутрен­них сил) по закону s = CD = F(t).

Дано: m 1 = 16 кг, т 2 = 10 кг, l = 0,5 м, = 2 , s = 0,4t 2 (s - в метрах, t - в секундах), М = kt, где k =6 Нм/с. Опре­делить: - закон изменения угловой скорости платформы.

Решение. Рассмотрим механическую систему, состоящую из плат­формы и груза D. Для определения w применим теорему об изменении кинетического момента системы относительно оси z:

(1)

Изобразим действующие на систему внешние силы: силы тяжести реакции и вращающий момент M. Так как силы и параллельны оси z, а реакции и эту ось пересекают, то их моменты относительно оси z равны нулю. Тогда, считая для момента положительным направление (т. е. против хода часовой стрелки), получим и уравнение (1) примет такой вид.

В некоторых задачах в качестве динамической характеристики движущейся точки вместо самого количества движения рассматривают его момент относительно какого-либо центра или оси. Эти моменты определяются также как и моменты силы.

Моментом количеством движения материальной точки относительно некоторого центра О называется вектор, определяемый равенством

Момент количества движения точки называют также кинетическим моментом .

Момент количества движения относительно какой-либо оси , проходящий через центр О, равен проекции вектора количества движения на эту ось .

Если количество движения задано своими проекциями на оси координат и даны координаты точки в пространстве, то момент количества движения относительно начала координат вычисляется следующим образом:

Проекции момента количества движения на оси координат равны:

Единицей измерения количества движения в СИ является – .

Теорема об изменении момента количества движения точки.

Теорема. Производная по времени от момента количества движения точки, взятого относительно какого-нибудь центра, равна моменту действующей на точку силы относительно того же центра.

Доказательство: Продифференцируем момент количества движения по времени

, , следовательно , (*)

что и требовалось доказать.

Теорема. Производная по времени от момента количества движения точки, взятого относительно какой-либо оси, равна моменту действующей на точку силы относительно той же оси.

Для доказательства достаточно спроектировать векторное уравнение (*) на эту ось. Для оси это будет выглядеть так:

Следствия из теорем:

1. Если момент силы относительно точки равен нулю, то момент количества движения относительно этой точки величина постоянная.

2. Если момент силы относительно оси равен нулю, то момент количества движения относительно этой оси величина постоянная.

Работа силы. Мощность.

Одна из основных характеристик силы, оценивающих действие силы на тело при некотором его перемещении.

Элементарная работа силы скалярная величина равная произведению элементарного перемещения на проекцию силы на это перемещение.

Единицей измерения работы в СИ является –

При при

Частные случаи:

Элементарное перемещение равно дифференциалу радиуса вектора точки приложения силы.

Элементарная работа силы равна скалярному произведению силы на элементарное перемещение или на дифференциал радиуса вектора точки приложения силы.

Элементарная работа силы равна скалярному произведению элементарного импульса силы на скорость точки.

Если сила задана своими проекциями () на оси координат и элементарное перемещение задано своими проекциями () на оси координат, то элементарная работа силы равна:

(аналитическое выражение элементарной работы).

Работа силы на любом конечном перемещении равна взятому вдоль этого перемещения интегралу от элементарной работы.

Мощностью силы называется величина, определяющая работу, совершаемую силой в единицу времени. В общем случае мощность равна первой производной по времени от работы.

,

Мощность равна скалярному произведению силы на скорость.

Единицей измерения мощности в СИ является –

В технике за единицу силы принимается .

Пример 1. Работа силы тяжести.

Пусть точка М, на которую действует сила тяжести Р, перемещается из положения в положение . Выберем оси координат так, чтобы ось была направлена вертикально вверх.

Тогда, , , и

Работа силы тяжести равна взятому со знаком плюс или минус произведению модуля силы на вертикальное перемещение точки ее приложения. Работа положительна, если начальная точка выше конечной, и отрицательна, если начальная точка ниже конечной.

Пример 2. Работа силы упругости.

Рассмотрим материальную точку закрепленную на упругом элементе жесткости с, которая совершает колебания вдоль оси х. Сила упругости (или восстанавливающая сила) . Пусть точка М, на которую действует только сила упругости, перемещается из положения в положение . ( , ).

Мощность пары сил равна


Кинетическая энергия точки

Кинетической энергией материальной точки (или ее живой силой) называют половину произведения массы точки на квадрат ее скорости.

В некоторых задачах в качестве динамической характеристики движущейся точки вместо самого количества движения рассматривают его момент относительно какого-либо центра или оси. Эти моменты определяются также как и моменты силы.

Моментом количеством движения материальной точки относительно некоторого центра О называется вектор, определяемый равенством

Момент количества движения точки называют также кинетическим моментом .

Момент количества движения относительно какой-либо оси , проходящий через центр О, равен проекции вектора количества движения на эту ось .

Если количество движения задано своими проекциями на оси координат и даны координаты точки в пространстве, то момент количества движения относительно начала координат вычисляется следующим образом:

Проекции момента количества движения на оси координат равны:

Единицей измерения количества движения в СИ является – .

Конец работы -

Эта тема принадлежит разделу:

Динамика

Лекция.. краткое содержание введение в динамику аксиомы классической механики.. введение..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Системы единиц
СГС Си Техническая [L] см м м [M]

Дифференциальные уравнения движения точки
Основное уравнение динамики можно записать так

Основные задачи динамики
Первая или прямая задача: Известна масса точки и закон ее движения, необходимо найти действующую на точку силу. m

Наиболее важные случаи
1. Сила постоянна.

Количество движения точки
Количеством движения материальной точки называется вектор, равный произведению м

Элементарный и полный импульс силы
Действие силы на материальную точку в течении времени

Теорема об изменении количества движения точки
Теорема. Производная по времени от количества движения точки равна действующей на точку силе. Запишем основной закон динамики

Теорема об изменении момента количества движения точки
Теорема. Производная по времени от момента количества движения точки, взятого относительно какого-нибудь центра, равна моменту действующей на точку силы относительно того же

Работа силы. Мощность
Одна из основных характеристик силы, оценивающих действие силы на тело при некотором его перемещении.

Теорема об изменении кинетической энергии точки
Теорема. Дифференциал кинетической энергии точки равен элементарной работе силы, действующей на точку.

Принцип Даламбера для материальной точки
Уравнение движения материальной точки относительно инерциальной системы отсчета под действием приложенных активных сил и сил реакции связей имеет вид:

Динамика несвободной материальной точки
Несвободной материальной точкой называется точка, свобода движения которой ограничена. Тела, ограничивающие свободу движения точки, называются связями

Относительное движение материальной точки
Во многих задачах динамики движение материальной точки рассматривается относительно системы отсчета, движущейся относительно инерциальной системы отсчета.

Частные случаи относительного движения
1. Относительное движение по инерции Если материальная точка движется относительно подвижной системы отсчета прямолинейно и равномерно, то такое движение называется относительны

Геометрия масс
Рассмотрим механическую систему, которая состоит из конечного числа материальных точек с массами

Моменты инерции
Для характеристики распределения масс в телах при рассмотрении вращательных движений требуется ввести понятия моментов инерции. Момент инерции относительно точки

Моменты инерции простейших тел
1. Однородный стержень 2. Прямоугольная пластина 3. Однородный круглый диск

Количество движения системы
Количеством движения системы материальных точек называется векторная сумма колич

Теорема об изменении количества движения системы
Эта теорема существует в трех различных формах. Теорема. Производная по времени от количества движения системы равна векторной сумме всех внешних сил, действующих н

Законы сохранения количества движения
1. Если главный вектор всех внешних сил системы равен нулю (), то количество движения системы постоянно

Теорема о движении центра масс
Теорема Центр масс системы движется так же, как и материальная точка, масса которой равна массе всей системы, если на точку действуют все внешние силы, приложенные к рассмат

Момент количества движения системы
Моментом количества движения системы материальных точек относительно некоторого

Момент количества движения твердого тела относительно оси вращения при вращательном движении твердого тела
Вычислим момент количества движения твердого тела относительно оси вращения.

Теорема об изменении момента количества движения системы
Теорема. Производная по времени от момента количества движения системы, взятого относительно какого-нибудь центра, равна векторной сумме моментов внешних сил, действующих на

Законы сохранения момента количества движения
1. Если главный момент внешних сил системы относительно точки равен нулю (

Кинетическая энергия системы
Кинетической энергией системы называют сумму кинетических энергий всех точек системы.

Кинетическая энергия твердого тела
1. Поступательное движение тела. Кинетическая энергия твердого тела при поступательном движении вычисляется так же, как и для одной точки, у которой масса равна массе этого тела.

Теорема об изменении кинетической энергии системы
Эта теорема существует в двух формах. Теорема. Дифференциал кинетической энергии системы равен сумме элементарных работ всех внешних и внутренних сил, действующих на систе

Первая производная по времени от кинетического момента точки относительно какого-либо центра равна моменту силы относительно того же центра:

Проецируя (171) на прямоугольные декартовы оси координат, получаем теоремы об изменении кинетического момента точки относительно этих осей координат:

,
,
. (171")

Теорема об изменении кинетического момента системы

Первая производная по времени от кинетического момента системы относительно какой-либо точки равна векторной сумме моментов внешних сил, действующих на систему, относительно той же точки.

, (172)

где
– главный момент всех внешних сил системы.

Проецируя (172) на прямоугольные декартовы оси координат, получаем теоремы об изменении кинетического момента системы относительно этих осей координат, т. е.

,
,
. (172")

Законы сохранения кинетических моментов

1. Если главный момент внешних сил системы относительно точки равен нулю, т. е.
, то, согласно (79), кинетический момент системы
относительно той же точки постоянен по модулю и направлению, т. е.

. (173)

Этот частный случай теоремы об изменении кинетического момента системы называют законом сохранения кинетического момента . В проекциях на прямоугольные декартовы оси координат по этому закону

,
,
,

где ,,– постоянные величины.

2. Если сумма моментов всех внешних сил системы относительно оси
равна нулю, т.е.
, то из (172") следует, что

. (174)

Следовательно, кинетический момент системы относительно какой-либо координатной оси постоянен, если сумма моментов внешних сил относительно этой оси равна нулю, что, в частности, наблюдается, когда внешние силы параллельны оси или пересекают ее. В частном случае для тела или системы тел, которые все вместе могут вращаться вокруг неподвижной оси, и если при этом

,

, или
, (175)

где и– момент инерции системы тел и их угловая скорость относительно оси вращения в произвольный момент времени;и– момент инерции тел и их угловая скорость в момент времени, выбранный за начальный.

Дифференциальное уравнение вращения твердого тела вокруг неподвижной оси

Из теоремы об изменении кинетического момента (172") следует дифференциальное уравнение вращения твердого тела вокруг неподвижной оси
:

, (176)

где – угол поворота тела.

Дифференциальное уравнение вращательного движения твердого тела в общем случае позволяет решать две основные задачи: по заданному вращению тела определять вращающий момент внешних сил и по заданному вращательному моменту и начальным условиям находить вращение тела. При решении второй задачи для нахождения угла поворота приходится интегрировать дифференциальное уравнение вращательного движения. Методы его интегрирования полностью аналогичны рассмотренным методам интегрирования дифференциального уравнения прямолинейного движения точки.

Теорема об изменении кинетического момента системы в относительном движении по отношению к центру масс

Пусть механическая система совершает движение относительно основной системы координат
. Возьмем подвижную систему координат
с началом в центре масс системы, движущуюся поступательно относительно основной системы координат. Можно доказать справедливость формулы:

где – абсолютная скорость центра масс,
.

Величина
является кинетическим моментом системы относительно центра масс для относительного движения относительно системы координат, движущейся поступательно вместе с центром масс, т. е. системы
.

Формула (176) показывает, что кинетический момент абсолютного движения системы относительно неподвижной точки равен векторной сумме кинетического момента центра масс относительно той же точки, если бы в центре масс была сосредоточена вся масса системы, и кинетического момента системы относительно центра масс для относительного движение системы по отношению к подвижной системе координат, движущейся поступательно вместе с центром масс.

Теорема об изменении кинетического момента системы относительно центра масс для относительного движения системы по отношению к системе координат, движущейся поступательно с центром масс; она формулируется так же, как если бы центр масс был неподвижной точкой :

или
, (178)

где
является главным моментом всех внешних сил относительно центра масс.